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Abstract

Analytical solutions are derived for the temperature distribution and heat transfer coe�cient in forced convection

of a viscoelastic ¯uid obeying the simpli®ed Phan-Thien±Tanner constitutive equation in laminar pipe and plane
channel ¯ows. The results are valid for fully developed thermal and hydrodynamic ¯ow conditions with a constant
heat ¯ux imposed at the wall and include the investigation of the e�ects of viscous dissipation. A nonvanishing
value of the extensional parameter of the ¯uid model is shown to be essential for the solution to di�er signi®cantly

from that for a Newtonian, or an elastic ¯uid without extensibility. Elasticity, only when combined with
extensibility, is shown to increase the heat transfer and to reduce the range of temperatures present inside a duct.
These bene®cial e�ects of ¯uid elasticity are enhanced by viscous dissipation. 7 2000 Elsevier Science Ltd. All

rights reserved.

1. Introduction

The Phan-Thien±Tanner (PTT) constitutive equation
was derived from considerations of network theory by
Phan-Thien and Tanner [1] and is a simple, yet ade-
quate model, often used to simulate the rheological

behaviour of polymer melts and concentrated solutions
as in Quinzani et al. [2], Laun and Schuch [3] and Wu
et al. [4]. In its general form it is written as

Y�tr t,T�t� l
�
t
r � xD � t� xt � DT

�
� 2ZD �1�

where t
r
stands for Oldroyd's upper convected deriva-

tive of the stress tensor t

t
r � Du

Dt
ÿ t � ruÿ ruT � t �2�

In Eq. (1), l is the relaxation time, x is an adjustable

parameter related to the slip velocity between the mol-
ecular network and the continuum medium, Z is the
viscosity coe�cient equal to the product of the relax-

ation time by the relaxation modulus lG, and D is the
rate of strain tensor. The stress-coe�cient function Y
is related to the rate of destruction of junctions in the
molecular network and can be decoupled as

Y�tr t,T� � f�T� f �tr t� �3�
where T is the temperature and tr t is the trace of the
stress tensor t: A simpli®ed version of the full PTT
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considers a�ne motions only and in this case x � 0 .
The ¯uid still exhibits shear-thinning because of the
term involving e, but to a lower extent. This simpli®ed

version of the PTT constitutive equation (SPTT)
becomes

Y�tr t, T�t� lt
r � 2ZD �4�

Following Phan-Thien [5] the function f�T � is arbi-
trarily set to unity at the reference temperature at

which the relaxation spectrum is measured and the ma-
terial parameters are determined.
The stress-dependent part of the stress-coe�cient

function has an exponential form

f �tr t� � exp

�
el
Z

tr t
�

�5�

which may be linearised when the factor in brackets is
small, as:

f �tr t� � 1� el
Z

tr t �6�

Although the exponential form of the stress-
coe�cient is more adequate for the prediction of poly-

mer melts (Larson [6]), signi®cant di�erences between
the two formulations require a considerable amount of
molecular deformation, particular the extensional de-

formation. From the physical point of view, the linear-
isation is accurate when the molecular deformation is
rather limited as in weak ¯ows (Tanner's classi®cation

[7]). The pipe and channel ¯ows analysed here are

weak ¯ows, according to that classi®cation; for these

¯ows the deformation of the molecules is small and so

the linear equation (6) is not too far from its exponen-

tial form in Eq. (5). These are shear-dominated ¯ows

for which most nonlinear models, such as the PTT

model, provide accurate descriptions of shear proper-

ties of polymer melts, as demonstrated by Peters et al.

[8]. The exception here is the failure of PTT to predict

a non-zero second normal stress di�erence, but this

quantity is totally irrelevant to the hydrodynamics of

fully developed pipe and channel ¯ows. In complex

strong ¯ows the accuracy of PTT is not so good,

but its use is favoured by the ability to control separ-

ately, and to some extent, its shear and elongational

properties.

In the above equations e is the second free par-

ameter and is related to the elongational behaviour of

the model. It imposes an upper limit to the elonga-

tional viscosity and that limit is proportional to the

inverse of e: Note that e � 0 is equivalent to the upper-

convected Maxwell model which has an unbounded

elongational viscosity in simple extensional ¯ow. As

will be shown, a ®nite value of the extensional capa-

bility of the ¯uid �e 6� 0� makes its heat transfer

characteristics considerably di�erent from the case of

e � 0: In addition, e may have an in¯uence on the

shear properties, imparting shear-thinning to the ¯uid

provided the parameter is not too small (Phan-Thien

[5] has shown no e�ect of e when it is of the order of

10ÿ2).

Nomenclature

a non-dimensional parameter de®ned in Eq. (16b)
Br Brinkman number as de®ned in Eq. (26)
cp speci®c heat

D rate of strain tensor
De Deborah number
DH hydraulic diameter

h heat transfer coe�cient
H half-width of channel
k thermal conductivity

Nu Nusselt number
p pressure
_qw heat ¯ux at the wall
r radial coordinate

R pipe radius
T temperature
�T cross-sectional average temperature

Tc centreline temperature
Tw wall temperature

u velocity vector
�u cross-sectional average velocity
�uN cross-sectional average velocity for a Newto-

nian ¯uid
x longitudinal coordinate
y transverse coordinate in channel ¯ow

Y stress coe�cient function
a thermal di�usivity
e parameter of PTT model

F viscous dissipation function
_g shear rate
Z viscosity coe�cient of PTT model
l relaxation time of PTT model

y non-dimensional temperature de®ned in Eq.
(31)

r density

t stress tensor
x parameter of PTT model
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Viscoelastic ¯uid ¯ow through pipes and channels is
clearly relevant from an industrial point of view. In

polymer processing, melts ¯ow in pipes before extru-
sion, usually at high temperatures, hence knowledge
of the temperature distribution and heat transfer

coe�cients is also of great importance. The quality of
the ®nal product depends on the ability to avoid
appearance of hot spots or instabilities during the

manufacturing process. These hot spots tend to occur
because the low thermal conductivity of polymers
induces considerable nonuniform temperature vari-

ations that are accentuated by viscous heating and
property variations with temperature. Knowledge of
the temperature distribution in forced convection
appears therefore, as an essential requirement to the

good design of polymer processing equipment. This is
the scope of the current work.
The analytical hydrodynamic solution of the simpli-

®ed PTT ¯uid ¯owing in a pipe has been obtained
recently by Oliveira and Pinho [9]. Based on that sol-
ution we analyse now the corresponding heat transfer

problem and derive the temperature distribution and
heat transfer coe�cient for pipe and channel ¯ows of
the simpli®ed form of the PTT model with a linear

stress-coe�cient. Note that for inelastic non-Newto-
nian ¯uids there is already a wealth of information, in
particular for ¯uids obeying the power law model (see,
for instance, Irvine and Karni [10]).

In the next section, the problem is formulated and
the solution of the corresponding hydrodynamic
problem will be presented. Then, the analytical heat

transfer solution will be derived in detail and the
e�ects of ¯uid elasticity and viscous dissipation on the
relevant quantities will be discussed. The derivation

and discussion of results will be carried out in detail
for the pipe ¯ow geometry only, whereas for the equiv-
alent planar geometry the ®nal results will be presented
without further comment.

2. Formulation of the problem

The ¯ow is considered to be fully developed both
thermally and hydrodynamically. It is also assumed
that the ¯ow is steady, laminar and has constant prop-
erties, i.e., no dependence of the ¯uid properties and

model parameters on temperature will be considered.
A constant wall heat transfer ¯ux constitutes the inves-
tigated boundary condition.

Fluids found in polymer processing (polymer melts
and concentrated solutions) are usually very viscous and
industrial ¯ows frequently involve large velocity gradi-

ents, thus viscous dissipation e�ects can be important
and therefore will be taken into account. However, as
mentioned above, we will consider in this analysis that

the temperature variations will not be high enough to
impose signi®cant changes in ¯uid properties.

Thermal and thermodynamic properties of polymer
solids are anisotropic as they are intimately related to
their molecular structure. As the polymer melts its

chains tend towards random con®gurations, thus these
properties become isotropic after some characteristic
time of the ¯uid. Otherwise, the need to consider a sec-

ond order thermal conductivity tensor to account for
nonisotropic heat conduction would arise. These prop-
erties also vary with temperature and pressure, but ex-

perimental data and previous heat transfer work
relevant to polymer melts (Tadmor and Gogos [11],
Bird et al. [12]) indicate that the assumption of con-
stant thermal conductivity and heat capacity does not

seriously a�ect the results, whereas the assumption of
constant density restricts the analysis to forced convec-
tion. In any case, the properties to be used in calcu-

lations with the formulas derived in this work should
be evaluated at the average temperature of the ¯uids in
order to improve accuracy.

It is also assumed that Fourier's law of heat conduc-
tion is valid and that the internal energy and thermal
conductivity do not depend explicitly on the velocity

gradient or other kinematic quantities. These are stan-
dard, reasonable assumptions in heat transfer calcu-
lations of non-Newtonian ¯uids as discussed in Section
4.4 of Bird et al. [12], Section 9.1 of Tanner [7] and in

Tadmor and Gogos [11]. The equation to be solved in
the axisymmetric case is the energy transport equation
with provision for viscous dissipation

k
1

r

@

@ r

�
r
@T

@ r

�
� F � rcpu

@T

@x
�7�

where k,r and cp stand for the thermal conductivity,

density and speci®c heat, respectively. The temperature
T varies radially r and axially x, u stands for the longi-
tudinal velocity component and F is the dissipation

function which is generaly de®ned as

F � tij
@ui
@xj

�8�

The thermal boundary conditions are axisymmetry

@T

@ r

����
r�0
� 0 �9�

and a constant wall heat ¯ux,

ÿk@T
@r

����
r�R
� _qw �10�

which is negative when it enters the pipe.
For the ¯ow conditions under scrutiny the dissipa-

tion function involves the shear component exclusively,
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i.e.,

F � txr _gxr � txr
@u

@r
�11�

with the velocity and shear stress pro®les taking the

forms derived by Oliveira and Pinho [9] and given in
Eqs. (12) and (13), respectively.

u

u
� 2

uN

u

"
1ÿ

�
r

R

�2
#(

1� 16eDe2
�
uN

u

�2
"
1�

�
r

R

�2
#)
�12�

txr
4Z �u=R

� ÿuN

�u

�
r

R

�
�13�

The shear rate _gxr is given by

_gxr
4 �u=R

� ÿuN

�u

�
r

R

�(
1� 32eDe2

�
uN

�u

�2�
r

R

�2
)

�14�

In Eqs. (12) and (14) the nondimensional group
De � l �u=R is the Deborah number, a measure of the
level of elasticity in the ¯uid. It is based on the cross-

sectional average velocity �u for the PTT ¯uid. uN is the
average velocity for a Newtonian ¯uid ¯owing under
the same pressure gradient dp=dx

uN � ÿ�dp=dx�R
2

8Z
�15�

and was shown to be given by:

uN

�u
� 4321=6

ÿ
d2=3 ÿ 22=3

�
6b1=2d1=3

with

d �
ÿ
33b� 4

�1=2�33=2b1=2 and

b � 64

3
eDe2 �16a�

For the following derivations it will be advantageous
to use a modi®cation of b, which we will designate as
a, and is de®ned below.

a � 16eDe2
�
uN

�u

�2

�16b�

This nondimensional parameter gives a measure of
both the extensional and the elastic properties of the
¯uid.

3. Analytical solution

3.1. Pipe ¯ow

The constant wall ¯ux boundary condition (Eq.

(10)) implies that the cross-section average temperature
� �T� must increase longitudinally at a constant rate.
This, together with the condition of thermal fully

developed ¯ow, implies a constant longitudinal gradi-
ent of temperature @T=@x:
Eqs. (11)±(14) are back-substituted into the energy

equation, which can then be integrated for the ®rst
time. The axisymmetry boundary condition (9) is
applied next to solve the ®rst constant of integration

leading to the radial distribution of the gradient of
temperature

@T

@ r
� 2RuN

a
dT

dx

"
�1� a�

2

r

R
ÿ 1

4

�
r

R

�3

ÿa
6

�
r

R

�5
#

ÿ 16ZuN
2

kR

"
1

4

�
r

R

�3

�a
3

�
r

R

�5
#

�17�

where the thermal properties have been compacted
into the de®nition of the thermal di�usivity

a � k

rcp

This equation is now integrated for the second time
and the second boundary condition is applied in-
directly. Instead of using Eq. (10) immediately, it is

more convenient to introduce now the centreline tem-
perature Tc and to relate it at a later stage with the
wall heat ¯ux, by making use of the de®nitions for _qw

and the bulk temperature �T: Thus, the temperature dis-

tribution becomes

Tÿ Tc � 2uNR
2

a
dT

dx

"
1� a

4

�
r

R

�2

ÿ 1

16

�
r

R

�4

ÿ a

36

�
r

R

�6
#

ÿ 16ZuN
2

k

"
1

16

�
r

R

�4

� a

18

�
r

R

�6
#

�18�

The wall temperature is easily obtained from Eq.

(18) by setting T � Tw at r=R � 1 and is given by

Tw ÿ Tc � uNR
2

2a
dT

dx

�
3

4
� 8

9
a

�
ÿ ZuN

2

k

�
1� 8

9
a

�
�19�

Note that in Eqs. (17)±(19) the second term on the

right-hand-side comes from the inclusion of the viscous
dissipation function in the energy equation, and the
elastic/extensional capacity of the ¯uid is buried in par-

F.T. Pinho, P.J. Oliveira / Int. J. Heat Mass Transfer 43 (2000) 2273±22872276



ameter a, as de®ned at the end of the previous section
(Eq. (16b)).

The wall heat ¯ux _qw allows the de®nition of the
heat transfer coe�cient (h ) for this forced convection
¯ow as

_qw � h
ÿ

�Tÿ Tw

�
�20�

where the cross-section average temperature is de®ned

as

�T �

�R
0

2puTr dr�R
0

2pur dr

�21�

The denominator of Eq. (21) represents the volu-
metric ¯ow rate pR2 �u: Oliveira and Pinho [9] derived
analytically a useful expression for the bulk velocity

�u � uN

�
1� 4

3
a

�
�22�

to be used in the ensuing analysis. Note, however, that
a still depends on �u: Upon substitution, integration of
Eq. (21) yields the bulk temperature

�Tÿ Tc �

uNR
2

a
dT

dx

�
13

54
a2 � 17

45
a� 7

48

�
ÿ ZuN

2

3k

�
4

9
a2 � 16

15
a� 1

2

�
1� 4

3
a

�23�

The boundary condition (10) is now introduced
through the heat transfer coe�cient

h �
ÿk
�
@T

@ r

�
r�R

�Tÿ Tw

�24a�

which is calculated next and presented in nondimen-
sional form as a Nusselt number

Nu � DHh

k
� 2Rh

k
�24b�

After performing the necessary substitutions in Eqs.
(24a) and (24b) we obtain:

Nu � �
uNR

2

a
dT

dx
ÿ 8ZuN

2

k

��
1� 4

3
a

�2
uNR

2

a
dT

dx

�
19

54
a2 � 17

30
a� 11

48

�
ÿ ZuN

2

k

�
28

27
a2 � 28

15
a� 5

6

�
�25�

Eq. (25) is still not in a convenient format because it
depends on some dimensional quantities. In the

absence of viscous dissipation, equivalent to setting
Z � 0, Eq. (25) would depend exclusively on a, which
is a dimensionless measure of elasticity.

The viscous dissipation is conveniently accounted
for by the dimensionless Brinkman number and in this
work we use the modi®ed version de®ned by Shah and

London [13] for a prescribed heat ¯ux:

Br � Z �u2

DH _qw

� Z �u2

2R _qw

�26�

where DH is the hydraulic diameter, here equal to 2R.
Using Eq. (22) we get a relationship between Br and

ZuN
2

ZuN
2 � 2R _qwBr�

1� 4

3
a

�2 �27�

Since _qw � ÿk@T=@ rjr�R � � 4ZuN
2

R ÿ �kuNR=2a� dT=
dx��1� 4=3a�, and using Eq. (27), we relate the modi-
®ed Brinkman number to the longitudinal temperature

gradient

uNR

a
dT

dx
� 2 _qw

k

�
8Brÿ 1ÿ 4

3
a

�
�
1� 4

3
a

�2 �28�

Finally, we can use Eqs. (27) and (28) to obtain a
more useful expression for the Nusselt number

Nu �

�
1� 4

3
a

�2
�
19

54
a2 � 17

30
a� 11

48

�
ÿ Br

�
1� 4

3
a

� �29�

Eq. (29) reduces to well-known Newtonian solutions:
for no elasticity �a � 0� and negligible viscous dissipa-
tion �Br � 0� it reduces to Nu � 4:364 (Holman [14]),
but for nonnegligible dissipation Eq. (29) becomes

Nu � 48

11ÿ 48Br
�30�

an expression in agreement with the Newtonian ¯uid
derivation.
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The above equation for the temperature pro®le T(r)
can also be cast into a nondimensional form using the

usual de®nition

y�r� � T�r� ÿ Tw

Tÿ Tw

�31�

which, together with the use of the modi®ed Brinkman
number, is given by

Fig. 1. Variation of the Nusselt number as a function of the Deborah number, Brinkman number and e, in the case of wall heating.

Due to _qw convention, Br is negative for wall heating.

y�r� �
2

�
8Brÿ 1ÿ 4

3
a

��
1� 4

3
a

�(
1� a

4

�
r

R

�2

ÿ 1

16

�
r

R

�4

ÿ a

36

�
r

R

�6

ÿ 3

16
ÿ 8

36
a

)

Br

�
28

27
a2 � 28

15
a� 5

6

�
�
�
1� 4

3
aÿ 8Br

��
19

54
a2 � 17

30
a� 11

48

�

ÿ
Br

�
1� 4

3
a

�(�
r

R

�4

�8
9
a

�
r

R

�6

ÿ1ÿ 8

9
a

)

Br

�
28

27
a2 � 28

15
a� 5

6

�
�
�
1� 4

3
aÿ 8Br

��
19

54
a2 � 17

30
a� 11

48

� �32�

However, as will be shown in Section 4, the dimen-

sionless temperature de®ned by Eq. (31) is not con-
venient when viscous dissipation is present and
improved understanding of the phenomena involved

will require a di�erent scaling. This will make use of
the following expressions:
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�Tw ÿ Tc �k
_qwR

�
4Brÿ 3

4
ÿ 8

9
a

1� 4

3
a

�33�

ÿ
Tÿ Tc

�
k

_qwR
� 2Br

1� 4

3
a

ÿ
2

�
13

54
a2 � 17

45
a� 7

48

�
�
1� 4

3
a

�2 �34�

ÿ
Tÿ Tw

�
k

_qwR
�

19

27
a2 � 17

15
a� 11

24�
1� 4

3
a

�2 ÿ 2Br

1� 4

3
a

�35�

3.2. Channel ¯ow

For the channel ¯ow the analytical derivation is

similar and is based on the hydrodynamic solution of
Oliveira and Pinho [9]. The analysis starts with the set
of equations corresponding to Eqs. (7)±(15), (16a) and

(16b) for the plane channel and the results of such
e�ort are presented now without any other details. The
transverse coordinate is y and the channel half-width is

equal to H.
For this ¯ow geometry we use

a � 9eDe2
�
uN

�u

�2

�36�

and we obtain the following results. The transverse dis-
tribution of temperature is

Fig. 2. Relative variation of the Nusselt number as a function of the Deborah number and Brinkman number for wall heating and

e � 0:1: Due to _qw convention, Br is negative for wall heating.
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Tÿ Tc � 3uNH
2

2a
dT

dx

�
"
1� a

2

�
y

H

�2

ÿ 1

12

�
y

H

�4

ÿ a

30

�
y

H

�6
#

ÿ 9ZuN
2

k

"
1

12

�
y

H

�4

� a

15

�
y

H

�6
#

�37a�
and in nondimensional form

y�y� �

�
12Brÿ 1ÿ 6

5
a

��
1� 6

5
a

�(
1� a

2

�
y

H

�2

ÿ 1

12

�
y

H

�4

ÿ a

30

�
y

H

�6

ÿ 5

12
ÿ 7

15
a

)

24Br

�
144

1925
a2 � 16

105
a� 8

105

�
�
�
1� 6

5
aÿ 12Br

��
808

1925
a2 � 232

315
a� 102

315

�

ÿ
24Br

�
1� 6

5
a

�(
1

12

�
y

H

�4

� a

15

�
y

H

�6

ÿ 1

12
ÿ a

15

)

24Br

�
144

1925
a2 � 16

105
a� 8

105

�
�
�
1� 6

5
aÿ 12Br

��
808

1925
a2 � 232

315
a� 102

315

� �37b�

From Eq. (37a) we get the wall temperature by setting
y=H � 1

Tw ÿ Tc � 3uNH
2

4a
dT

dx

�
5

6
� 14

15
a

�
ÿ 9ZuN

2

k

�
1

12
� a

15

�
�38�

The cross-sectional average temperature is given by

�Tÿ Tc �
9uNH

2

20a
dT

dx

�
108

231
a2 � 145

189
a� 13

42

�
ÿ 27ZuN

2

2k

�
12

3465
a2 � 1

105
a� 1

210

�
1� 6

5
a

�39�

The ®nal expression for the Nusselt number
�Nu � 4Hh

k � becomes

Nu �
4

�
1� 6

5
a

�3
�
1� 6

5
aÿ 12Br

��
1212

1925
a2 � 116

105
a� 17

35

�
� 4Br

�
1296

1925
a2 � 48

35
a� 24

35

� �40�

Similarly to the pipe ¯ow, Eq. (40) reduces to the

well known Newtonian value of Nu � 8:235 when
a � 0 and Br � 0, and to

Nu � 140

17ÿ 108Br
�41�

for the Newtonian ¯ow case with viscous dissipation.
The viscous dissipation contribution to the tempera-

ture pro®le for a Newtonian ¯uid is in agreement with
the results in Schlichting [15].

4. Discussion of results

In the absence of viscous dissipation the solution is
independent of whether there is wall cooling or heat-
ing. However, viscous dissipation always contributes to

internal heating of the ¯uid, hence the solution will dif-
fer according to the process taking place at the wall.

4.1. Negative heat ¯ux at the wall (wall heating)

According to the de®nition of wall heat ¯ux adopted

here (see Eq. (10)) a negative value of _qw implies that

heat is being supplied across the walls into the ¯uid

and Eq. (26) requires that Br < 0: In this case Eq. (28)

implies a positive longitudinal gradient of temperature

�dT=dx > 0�, i.e. the ¯uid is always being heated. Fig.
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1 shows the variation of the Nusselt number with the
Deborah number, the modi®ed Brinkman number and

the extensional parameter e of the constitutive
equation. There is a strong in¯uence of viscous dissipa-
tion on the heat transfer coe�cient which is also

a�ected by ¯uid elasticity (De ) and the extensional
capabilities �e 6� 0� of the ¯uid. For an elastic ¯uid
devoid of extensional characteristics �e � 0), Nu

remains equal to the corresponding value at De � 0,
even for De > 0: In the absence of viscous dissipation
e�ects the Nusselt number increases from the Newto-

nian value of 4.364 to the asymptotic value of 5.053
which is independent of the value of e and De. As the
magnitude of the modi®ed Brinkman number increases
the Nusselt number decreases and simultaneously the

role of elasticity is enhanced: the relative variation of
the Nusselt number with the Deborah number becomes
more pronounced, as can be observed in Fig. 2. In this

®gure, the ratio of Nu to the corresponding value Nu0
for De � 0 is shown as a function of De for di�erent

values of Br. A threefold increase of Nusselt number is
seen to occur for Brinkman numbers as low as ÿ1.
The decrease in Nusselt number with viscous dissipa-

tion is a consequence of the increased temperature
range within the pipe and namely of the di�erence

Tw ÿ �T for a constant heat ¯ux. Based on the same
argument, an increase in Nusselt number by elasticity
is synonymous to the reduction in temperature di�er-

ences within the pipe. This reduction of the tempera-
ture di�erences stems from an improved heat transfer
in the wall region due to the higher velocity gradients

there, at high values of the Deborah number (check
Fig. 2 of Oliveira and Pinho [9]).
The e�ect of e is similar to that of the Deborah

number as can be con®rmed in the radial pro®les

of the normalised temperatures in Fig. 3 which
compare e � 0:1 and e � 0:25: This is to be
expected since elasticity is quanti®ed by the function

a containing both e and De contributions. It is not
apparent from Eqs. (16a) and (16b) how a will

Fig. 3. E�ect of e on the radial variation of the standard normalised temperature y for negligible viscous dissipation �Br � 0).

F.T. Pinho, P.J. Oliveira / Int. J. Heat Mass Transfer 43 (2000) 2273±2287 2281



vary when e and De are increased but the results in
Oliveira and Pinho [9] show that a does increase

indeed with
��
e
p

De: One should also keep in mind
that an increase in e is actually related to a re-
duction of the extensional viscosity of the ¯uid and

not with shear elasticity, this is measured by the
shear relaxation time of the ¯uid. In this respect,
the present results are very important because they

show that an elastic ¯uid with extensional character-
istics (measured by e� have heat transfer character-
istics, in fully developed duct ¯ow, substantially

di�erent from an elastic ¯uid without extensibility.
Indeed, if we take a ¯uid obeying the upper con-
vected Maxwell equation, which has no capacity for
extension �e � 0� but is clearly elastic, we see that

its heat transfer characteristics are coincident with
those for a Newtonian ¯uid.
The standard way of making temperature nondimen-

sional, based on Eq. (31) and exempli®ed in Fig. 3, is
not appropriate for the situation of imposed heat-¯ux

because the temperature scale DT � �Tÿ Tw varies with
the relevant parameters and may lead to misinterpreta-

tion of the corresponding variation of T. For example,
in Fig. 3 the gradient of this standard dimensionless
temperature is seen to vary with elasticity near the

wall, while the actual temperature gradient is constant
for the given _qw: In fact, for a given _qw, the unknown
of the problem is DT and it is thus more convenient to

de®ne a ®xed temperature scale that we take as _qwR=k:
Fig. 4 shows two sets of temperature pro®les made
nondimensional with this ®xed scale, for Br � ÿ1 and

Br � ÿ10, and various Deborah numbers (at e � 0:1).
This plot makes clear the aforementioned e�ects of
increased elasticity and reduced dissipation in reducing
the range of temperature variation across the pipe sec-

tion and consequently leading to higher Nusselt num-
bers.
Note also that with this normalisation of the tem-

perature the slope of the curves near the wall must be
equal to ÿ1 for all cases, as is apparent in Fig. 4.

Fig. 4. Radial pro®les of the normalised temperature for wall heating �Br � ÿ1 and Br � ÿ10), as a function of Deborah number

and for e � 0:1:
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4.2. Positive heat ¯ux at the wall (wall cooling)

Wall cooling � _qw > 0� is applied to reduce the bulk

temperature of the ¯uid but, as for the Newtonian
case, the amount of viscous dissipation may change
the overall heat balance: for low positive values of Br,

a positive wall heat ¯ux leads to a consistent decrease
in temperature, dT=dx < 0 (cf. Eq. (28)); however, if
Br exceeds a certain limiting value, the heat generated

internally by viscous processes will overcome the e�ect
of wall cooling. This limiting condition is obtained
after equating to zero the gradient of temperature in
Eq. (28), to give

Br1 � 1

8
� a

6
�42�

Above this critical Brinkman number the ¯uid

heats up �dT=dx > 0� and the Nusselt number, as
de®ned by Eqs. (24a) and (24b), is positive. This
Nusselt number must be interpreted cautiously

because there exists a second critical Brinkman

number de®ned by

Br2 �
19

54
a2 � 17

30
a� 11

48

1� 4

3
a

�43�

At Br � Br2, Eq. (35) shows that �T � Tw leading to

an unde®ned Nu (in fact in®nite since
Nu � 2 _Rqw=�k� �Tÿ Tw��). The Br value of Eq. (43)
thus gives a mathematical singularity for the de®-
nition of Nusselt number here adopted. Above the

second critical value of Br the Nusselt number
switches to negative, expressing in this way the rela-
tive change in the magnitude of both temperatures,

not a change in the direction of the wall heat ¯ux.
The radial temperature pro®les change according to

the range of Brinkman number and Fig. 5 shows typi-

cal pro®les in each of the zones of positive Brinkman
number behaviour, including the case of negligible vis-
cous dissipation. Note that for the speci®c case of Fig.

5, the critical Brinkman numbers are Br1 � 0:516 and

Fig. 5. Radial pro®le of the normalised temperature as a function of the Brinkam number for De � 5 and e � 0:1:
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Br2 � 0:847: Thus, the curves for Br � 0:6 and 1.2

already exhibit the e�ect of ¯uid heating up due to dis-

sipation � �T > Tc� although the slope at the wall must

remain equal to ÿ1. These behaviours are analogous

to those of Newtonian ¯uids for cooled wall boundary

layer, and the novelty here is that the boundaries

between the various regions change with elasticity.

This e�ect, and that of the material parameter e will

be analysed next.

Fig. 6 shows the variation of �Tw ÿ Tc�
�
k _qwR from

Eq. (33) and � �Tÿ �Tc�
�
k _qwR from Eq. (34) as a func-

tion of the modi®ed Brinkman number, for a Newto-

nian ¯uid �De � 0� and an elastic ¯uid �De � 5� with
two values of the extensional parameter �e � 0:1 and

0.25). Those temperatures follow a straight line vari-

ation and, for each De and e, say De � 0, the two lines

cross at the second critical Brinkman number (Eq.

(43)). Higher values of the Deborah number and of e
always reduce the slope of the curves, with the former

parameter having a stronger in¯uence than the latter.

Simultaneously, the value of the second critical Brink-

man number Br2 increases and the dashed straight

lines in Fig. 6 cross at Br2 � 0:847 for e � 0:1 and at

Br2 � 1:111 for e � 0:25 (this second value is further

to the right of the x-axis limit). This e�ect of elasticity

on the critical Brinkman numbers is clari®ed in Fig. 7

where Br1 and Br2 are shown as a function of De, for

three values of the extensional parameter: e � 0:01
(small extensional capacity), e � 0:1 and e � 0:25 (lar-

ger extensional capacity, typical of polymer melts).

The variation of both critical Brinkman numbers

with the Deborah number and the parameter e is simi-

lar: both increase in a similar way, with Br2 always

higher than Br1: The role of ¯uid elasticity is thus that

of extending the range of Brinkman numbers over

which there is cooling of the ¯uid, when heat is

extracted at the wall, which is equivalent to saying that

there is a reduction of the e�ects of viscous dissipation.

This is consistent with the strong reduction in tempera-

ture di�erences observed with elastic ¯uids (compare

curves for Tw and �T in Fig. 6 at identical conditions).

Since elasticity reduces temperature di�erences, the

Fig. 6. Variation of the normalised bulk and wall temperatures with the Brinkman number for the cases without �De � 0, solid)

and with �De � 5, dashed) elasticity. Two values of e are considered: 0.1 (long-dash) and 0.25 (short-dash).
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¯uid can sustain higher intensities of viscous dissipa-
tion before the reversal of overall ¯uid `heating/cool-

ing' behaviour. The plug-like velocity pro®le and
higher shear rates in the wall region of more viscoelas-
tic ¯uids simultaneously increase the amount of ¯uid

¯owing near the wall and the heat transfer coe�cient,
as a consequence of the shorter radial distance the
heat ¯ux must traverse to heat the ¯uid.
Finally, in Fig. 8 the Nusselt number for Br > Br2 is

plotted as a function of the Deborah number. The
increase of viscous dissipation for Br > Br2 leads to
increased temperature di�erences and consequently to

a reduction of the Nusselt number in absolute terms.
For the channel ¯ow similar conclusions can be

drawn from a similar study.

4.3. Empirical correlation for engineering

The use of Eq. (29) for engineering purposes, as in
polymer processing extrusion, is complicated by the

need to calculate the ratio uN= �u in Eq. (16). Both that
ratio and function a depend on e and De and a simpler

alternative to calculate the Nusselt number relies on
the following correlation for a

a � 0:0513
��
e
p

Deÿ 1:68
ÿ ��

e
p

De
�0:329�3:235ÿ ��

e
p

De
�0:58
�44�

and the use of Eq. (29)

Nu �

�
1� 4

3
a

�2
�
19

54
a2 � 17

30
a� 11

48

�
ÿ Br

�
1� 4

3
a

�
With Eq. (44) only the ¯uid parameters �e and l� and
the bulk velocity � �u� are required and the Nusselt num-

ber calculated in this way is well within 1% of that
given by the exact solution for values of

��
e
p

De between
0.1 and 300. For lower values of

��
e
p

De the Nusselt

Fig. 7. Variation of the two critical Brinkman numbers with the Deborah number and the material parameter e: Br1: (no symbol);

Br2:�D�: e � 0:01 (full line); e � 0:1 (long dashes); e � 0:25 (short dashes).
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number is close to that of the corresponding Newto-
nian case.

5. Conclusions

Temperature distributions and heat transfer co-
e�cients were obtained in pipe and channel ¯ows
of a simpli®ed Phan-Thien±Tanner ¯uid when the

stress coe�cient assumed a linear form and the
e�ect of temperature variations on the material par-
ameters was neglected. The analytical solution
includes the e�ect of viscous dissipation.

In all circumstances, i.e. for wall heating and
cooling and regardless of the magnitude of viscous
dissipation, an increase of ¯uid elasticity (De ) and/

or an increase of e results in enhanced heat transfer
provided e 6� 0: It was found that these e�ects of
¯uid elasticity (De ) and extensibility �e), as

measured by the parameter a and indirectly by��
e
p

De, are greatly enhanced by viscous dissipation,
here quanti®ed by a modi®ed Brinkman number.

For example, for vanishing viscous dissipation there
is an increase of 9% in the Nusselt number when
De rises from 0 to 2 (at e � 0:1), but this increase

in Nu attains a value of 31% when the level of dis-
sipation is just Br � ÿ0:1
For wall cooling and whenever the Brinkman num-

ber exceeds a critical value �Br1 in Eq. (42)), the heat
generated by viscous dissipation overcomes the heat
removed at the wall and the ¯uid heats up longitudin-
ally. Fluid elasticity and extensibility delays this critical

Brinkman number to higher values.
Purely elastic ¯uids �e � 0� have heat transfer

characteristics equal to those of Newtonian ¯uids.
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Fig. 8. Variation of the Nusselt number with the Deborah and Brinkman numbers for wall cooling, e � 0:1 and Br > Br2:
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